Fonctions d'une variable réelle : limites

- Propriété vérifiée au voisinage d'un point de $\overline{\mathbb{R}}$.
- Point adhérent à une partie. Adhérence d'une partie.
- Lorsque $f: A \subset \mathbb{R} \to \mathbb{R}$, $a \in \overline{A}$ et $\ell \in \mathbb{R}$, la fonction f tend vers ℓ en a si et seulement si

$$\forall \varepsilon > 0, \exists \alpha > 0, \forall x \in A, |x - a| \le \alpha \Rightarrow |f(x) - \ell| \le \varepsilon$$

On définit de même les autres types de limite (a infini et/ou ℓ infini).

- Unicité de la limite lorsqu'elle existe. Une fonction ayant une limite réelle en a est bornée au voisinage de a. Le produit d'une fonction bornée par une fonction qui tend vers 0 est encore une fonction qui tend vers 0.
- Opérations sur les limites : addition, multiplication par un réel, produit, quotient, composition.
- Caractérisation séquentielle des limites : si $f: A \to \mathbb{R}$, $a \in \overline{A}$ et $\ell \in \overline{\mathbb{R}}$, $f(x) \to \ell$ lorsque $x \to a$ si et seulement si pour toute suite (x_n) de points de A qui tend vers a, la suite $(f(x_n))$ tend vers ℓ .
- Limites et ordre : passage à la limite dans les inégalités, théorèmes d'encadrement des limites.
- Fonctions monotones *sur un intervalle* : existence en tout point qui n'est pas une borne de l'intervalle d'une limite à gauche et d'une limite à droite. Inégalités relatives à ces limites. Le cas des bornes de l'intervalle.
- Brève extension aux fonctions à valeurs complexes.

Fonctions continues

Toutes les fonctions considérées sont définies sur un intervalle I de \mathbb{R} .

- Continuité en un point $a \in I$: la fonction a une limite en a (cette limite étant forcément f(a)). Continuité sur un intervalle. Notation $C^0(I)$.
- Structure de \mathbb{R} -algèbre sur l'ensemble $C^0(I)$ des fonctions continues sur I. Stabilité de la continuité par composition.
- Image d'un intervalle : théorème des valeurs intermédiaires.
- Image d'un segment : l'image d'un segment par une fonction continue est un segment. Toute fonction continue sur un segment y possède un maximum et un minimum.
- Une fonction continue $f: I \to \mathbb{R}$ est injective si et seulement si elle est strictement monotone.
- Pour toute fonction continue $f: I \to \mathbb{R}$ strictement croissante, J = f(I) est un intervalle du même « type » que I (i.e. ouvert ou fermé aux mêmes endroits que I). f est une bijection de I sur J et la réciproque de f, $f^{-1}: J \to I$, est continue, strictement croissante.
- Prolongement par continuité : $f:]a, b] \to \mathbb{R}$, continue, est prolongeable en une fonction continue $[a, b] \to \mathbb{R}$ si et seulement si f admet une limite finie en a.
- Fonctions lipschitziennes. Une fonction lipschitzienne est continue.