L'algorithme de Fisher-Yates

Marc Lorenzi

12 mai 2022

1 Introduction

On représente en Python une permutation $\sigma \in \mathfrak{S}_n$ par la liste $[\sigma(0), \ldots, \sigma(n-1)]$, c'est à dire par une liste d'entiers distincts de [0, n-1].

Dans toute la suite, nous identifions l'ensemble \mathfrak{S}_n avec l'ensemble des listes Python de longueur n dont les éléments sont les entiers entre 0 et n-1.

Si s est une liste de longueur n et $0 \le a \le b \le n$, s[a:b] est la sous-liste des éléments de s d'indices $a, a+1, \ldots, b-1$. En particulier, s[a:a] est la liste vide.

Si a et b sont deux entiers tels que $a \leq b$, l'appel randint(a,b) renvoie un élément aléatoire de $[\![a,b]\!]$ avec une probabilité uniforme. Nous y revenons un peu plus loin.

2 L'algorithme

L'algorithme de Fisher-Yates est un algorithme qui renvoie une permutation « aléatoire » de \mathfrak{S}_n en temps O(n).

Voici une implémentation en Python de l'algorithme de Fisher-Yates. La fonction $fisher_yates$ prend en paramètre un entier n et renvoie une liste.

```
def fisher_yates(n):
    s = list(range(n))
    for i in range(n):
        j = randint(i, n - 1)
        s[i], s[j] = s[j], s[i]
    return s
```

Une version légèrement modifiée de cet algorithme permet de mélanger une liste en place, c'est à dire avec une complexité en espace en O(1). La voici.

```
def mélanger(xs):
    n = len(xs)
    for i in range(n):
        j = randint(i, n - 1)
        xs[i], xs[j] = xs[j], xs[i]
```

Nous allons dans la suite de l'article analyser la fonction fisher_yates.

3 Propriétés faciles

Commençons par deux propriétés évidentes.

Proposition 1. L'algorithme effectue n échanges d'éléments de listes, et termine.

Proposition 2. La liste renvoyée est de longueur n.

Maintenant, un tout petit peu moins évident.

Proposition 3. Pour tout $i \in [0, n]$, la valeur de s avant la i^e itération est une permutation de \mathfrak{S}_n .

Démonstration. Pour i = n, il faut comprendre que l'on parle de la valeur de s à la sortie de la boucle for.

Les modifications de la liste s effectuées par l'algorithme sont des transpositions (et donc des permutations) d'éléments de s. La liste s est initialement égale à id, c'est donc au départ un élément de \mathfrak{S}_n . Comme toute composée de permutations en est encore une, la proposition en découle par une récurrence sur i. \square

Bien entendu, en prenant i = n dans la proposition précédente, on obtient que la fonction renvoie un élément de \mathfrak{S}_n .

Ce qui est beaucoup moins évident, c'est que l'algorithme de Fisher-Yates peut renvoyer n'importe quelle permutation de \mathfrak{S}_n , avec une probabilité uniforme. C'est ce que nous allons maintenant prouver.

4 Analyse probabiliste

Définition 1. Pour tout $i \in [0, n]$, une *i-permutation* est une liste de *i* entiers distincts de [0, n-1].

On crée une *i*-permutation en choisissant son élément 0 (n possibilités), son élément 1 (n-1 possibilités),..., son élément i-1 (n-i+1 possibilités). Le cardinal de l'ensemble des i permutations est donc

$$n(n-1)\dots(n-i+1) = \frac{n!}{(n-i)!}$$

Pour parler de probabilités, donnons-nous un espace probabilisé $(\Omega, \mathcal{T}, \mathbb{P})$. Nous supposerons cet espace assez riche pour qu'il existe n variables aléatoires indépendantes $X_i:\Omega \longrightarrow \mathbb{R}, \ i \in [\![0,n-1]\!]$, de sorte que X_i suit une loi uniforme sur $[\![i,n-1]\!]$. L'appel randint(i, n - 1) renvoie $X_i(\omega)$ où ω est un élément de Ω .

Notation. Pour tout $i \in [0, n]$, notons s_i la valeur de s avant la i^e itération.

Proposition 4. Soit $\sigma \in \mathfrak{S}_n$. Alors

$$\mathbb{P}(s_n = \sigma) = \frac{1}{n!}$$

Appelons $\mathcal{P}(i)$ la propriété suivante :

Pour toute i-permutation σ ,

$$\mathbb{P}(s_i[0:i] = \sigma) = \frac{(n-i)!}{n!}$$

Lemme 5. $\forall i \in [0, n], \mathcal{P}(i)$.

Démonstration. Faisons une récurrence sur i.

Pour i=0, il y a une unique 0-permutation σ , qui est la liste vide. La sous-liste $s_0[0:0]$ est aussi la liste vide. On a donc

$$\mathbb{P}([s_0[0:0] = \sigma]) = \mathbb{P}(\Omega) = 1 = \frac{(n-0)!}{n!}$$

Soit $i \in [0, n-1]$. Supposons $\mathcal{P}(i)$. Soit $\sigma = [x_0, \dots, x_i]$ une (i+1)-permutation.

Soit $\sigma' = \sigma[0:i] = [x_0, \dots, x_{i-1}]$. Considérons les événements

$$E_1 = [s_i[0:i] = \sigma']$$

 $E_2 = [s_{i+1}[0:i+1] = \sigma]$

Par l'hypothèse de récurrence, on a

$$\mathbb{P}(E_1) = \frac{(n-i)!}{n!}$$

Maintenant, remarquons que

$$\mathbb{P}(E_1 \cap E_2) = \mathbb{P}(E_2 \mid E_1)\mathbb{P}(E_1)$$

À la i^e itération, l'algorithme crée s_{i+1} en échangeant $s_i[i]$ et $s_i[X_i(\omega)]$. Comme $X_i(\omega) \in [i, n-1]$, on a

$$s_i[0:i] = s_{i+1}[0:i]$$

Calculons $\mathbb{P}(E_2 \mid E_1)$. On a

$$\begin{split} \mathbb{P}(E_2 \mid E_1) &= \mathbb{P}(s_{i+1}[0:i+1] = \sigma \mid s_i[0:i] = \sigma') \\ &= \mathbb{P}(s_{i+1}[i] = x_i, s_{i+1}[0:i] = \sigma' \mid s_i[0:i] = \sigma') \\ &= \mathbb{P}(s_{i+1}[i] = x_i, s_i[0:i] = \sigma' \mid s_i[0:i] = \sigma') \\ &= \mathbb{P}(s_{i+1}[i] = x_i \mid s_i[0:i] = \sigma') \\ &= \frac{1}{n-i} \end{split}$$

Précisons un peu la dernière égalité. Sous l'hypothèse que l'événement $[s_i[0:i]=\sigma']$ est réalisé, x_i n'est aucun des éléments $s_i[0],\ldots,s_i[i-1]$. Il existe donc $k\in [\![i,n-1]\!]$ tel que $s_i[k]=x_i$. De plus,

$$s_{i+1}[i] = s_i[X_i(\omega)]$$

On a donc

$$s_{i+1}[i] = x_i \iff X_i(\omega) = k$$

Ainsi, puisque la variable aléatoire X_i suit une loi uniforme sur $[\![i,n-1]\!],$

$$\mathbb{P}(s_{i+1}[i] = x_i \mid s_i[0:i] = \sigma') = \mathbb{P}([X_i = k]) = \frac{1}{n-i}$$

De là,

$$\mathbb{P}(E_1 \cap E_2) = \mathbb{P}(E_2 \mid E_1)\mathbb{P}(E_1) \\
= \frac{(n-i)!}{n!} \frac{1}{n-i} \\
= \frac{(n-(i+1))!}{n!}$$

Nous pouvons maintenant prouver la proposition.

Démonstration. Appliquons le lemme à i=n. Soit σ une n-permutation, c'est à dire un élément de \mathfrak{S}_n . On a

$$\mathbb{P}(s_n[0:n] = \sigma) = \frac{(n-n)!}{n!} = \frac{1}{n!}$$