\mathbb{R}

Marc Lorenzi

24 septembre 2022

1 Corps ordonnés

1.1 Notion de corps ordonné

Définition 1. Un corps ordonné est un quadruplet $(\mathbb{K}, +, \times, \leq)$ où $(\mathbb{K}, +, \times)$ est un corps et \leq est une relation d'ordre sur \mathbb{K} vérifiant les conditions

- $\bullet \ \, \text{Pour tous} \,\, x,y,z \in \mathbb{K}, \, x < y \implies x+z < y+z.$
- Pour tous $x, y, z \in \mathbb{K}$, x < y et $z > 0 \implies xz < yz$.

Bien entendu, x < y signifie comme c'est l'usage que $x \le y$ et $x \ne y$.

Exemple. Un exemple essentiel de corps ordonné est le corps $\mathbb Q$ des rationnels.

Si $(\mathbb{K}, +, \times, \leq)$ est un corps ordonné, nous noterons \mathbb{K}_+^* l'ensemble des éléments de \mathbb{K} strictement positifs et \mathbb{K}_-^* l'ensemble des éléments de \mathbb{K} strictement négatifs.

Proposition 1. *Soit* $(\mathbb{K}, +, \times, \leq)$ *un corps ordonné.*

- Les ensembles \mathbb{K}_{-}^{*} , $\{0\}$ et \mathbb{K}_{+}^{*} sont disjoints deux à deux.
- $\bullet \ \mathbb{K} = \mathbb{K}_-^* \cup \{0\} \cup \mathbb{K}_+^*.$
- Pour tous $x, y \in \mathbb{K}_+^*$, $x + y \in \mathbb{K}_+^*$.
- Pour tous $x, y \in \mathbb{K}_+^*$, $xy \in \mathbb{K}_+^*$.
- Pour tout $x \in \mathbb{K}$, $x \in \mathbb{K}_+^* \iff -x \in \mathbb{K}_-^*$.

Démonstration. Démonstration facile. \square

Nous allons maintenant voir que les ensembles \mathbb{K}_{+}^{*} et \mathbb{K}_{-}^{*} caractérisent complètement la structure de corps ordonné de \mathbb{K} .

Proposition 2. Soit $(\mathbb{K}, +, \times)$ un corps. On suppose qu'il existe $N \subseteq \mathbb{K}$ et $P \subseteq K$ vérifiant les propriétés suivantes.

- Les ensembles N, $\{0\}$ et P sont disjoints deux à deux.
- $\mathbb{K} = N \cup \{0\} \cup P$.
- Pour tous $x, y \in P$, $x + y \in P$.

- Pour tous $x, y \in P$, $xy \in P$.
- Pour tout $x \in \mathbb{K}$, $x \in P \iff -x \in N$.

Alors, il existe une unique relation \leq faisant de \mathbb{K} un corps ordonné, et telle que $P = \mathbb{K}_+^*$. On a alors $N = \mathbb{K}_-^*$.

Nous allons montrer ce résultat en plusieurs étapes. On suppose dans la suite donnés le corps $\mathbb K$ et les ensembles N et P. On suppose vérifiées les 4 hypothèses de la proposition ci-dessus.

Lemme 3. [Règle des signes]

Pour tous $x, y \in \mathbb{K}$,

- $\bullet \ x \in P \ et \ y \in P \implies xy \in P.$
- $\bullet \ x \in P \ et \ y \in N \implies xy \in N.$
- $x \in N$ et $y \in P \implies xy \in N$.
- $x \in N$ et $y \in N \implies xy \in P$.

Démonstration. Le premier point résulte de la définition. Montrons le second point, les autres sont identiques. Soient $x \in P$ et $y \in N$. On a $-y \in P$ et donc

$$-xy = x(-y) \in P$$

On en déduit que $-(-xy) = xy \in N$. \square

Lemme 4. [Unicité]

Il existe au plus une relation \leq sur $\mathbb K$ faisant de $\mathbb K$ un corps ordonné et telle que $P=\mathbb K_+^*$.

Démonstration. Supposons donnée une telle relation. Soient $x,y \in \mathbb{K}$. Par la compatibilité de la relation \leq avec l'addition, on a x < y si et seulement si y - x > 0, c'est à dire $y - x \in P$. \square

Pour montrer l'existence, il nous reste à vérifier que cette relation a toutes les propriétés voulues.

Définition 2. Pour tous $x, y \in \mathbb{K}$, on pose

$$\begin{array}{ccc} x < y & \Longleftrightarrow & y - x \in P \\ x \leq y & \Longleftrightarrow & x < y \text{ ou } x = y \end{array}$$

Lemme 5. La relation \leq est un ordre total sur \mathbb{K} .

Démonstration.

• Réflexivité. Soit $x \in \mathbb{K}$. On a x = x, donc $x \le x$.

- Totalité. Soient $x, y \in \mathbb{K}$. Soit z = y x. On a $z \in N$ ou z = 0 ou $z \in P$. Si $z \in N$, alors $-z = x y \in P$, et donc y < x. Si z = 0, alors x = y. Et si $z \in P$, alors x < y.
- Antisymétrie. Soient $x, y \in \mathbb{K}$. Supposons $x \leq y$ et $y \leq x$. Supposons que $x \neq y$. On a alors x < y et y < x, d'où $y x \in P$ et $y x \in N$, contradiction puisque $P \cap N = \emptyset$.
- Transitivité. Soient $x, y, z \in \mathbb{K}$. Supposons $x \leq y$ et $y \leq z$. Si x = y ou y = z, on a clairement $x \leq z$. Sinon, $y x \in P$ et $z y \in P$. De là,

$$z - x = (z - y) + (y - x) \in P$$

et donc x < z.

Lemme 6. Pour tous $x, y, z \in \mathbb{K}$,

$$x < y \implies x + z < y + z$$

Démonstration. Soient $x, y, z \in \mathbb{K}$. Supposons x < y. On a

$$(y+z) - (x+z) = y - x \in P$$

et donc x + z < y + z. \square

Lemme 7. Pour tous $x, y, z \in \mathbb{K}$,

$$x < y \text{ et } z > 0 \implies xz < yz$$

 $x < y \text{ et } z < 0 \implies yz < xz$

Démonstration. Soient $x, y, z \in \mathbb{K}$. Supposons x < y et z > 0. On a

$$yz - xz = (y - x)z \in P$$

car y - x et z appartiennent à P. Ainsi, xz < yz.

Si, au contraire, z < 0, alors

$$yz - xz = (y - x)z \in N$$

car $y - x \in P$ et $z \in N$. Ainsi, yz < xz. \square

1.2 Les multiples rationnels de 1

Dans tout anneau, on dispose de la notion de multiple entier d'un élément. Nous allons voir que dans un corps ordonné, on peut parler de multiples rationnels. Donnons-nous un corps ordonné \mathbb{K} . Notons

$$\mathbb{Z}' = \{a1 : a \in \mathbb{Z}\}\$$

Proposition 8. L'application $\varphi : \mathbb{Z} \longrightarrow \mathbb{Z}'$ définie par $\varphi(n) = n1$ (le n^e multiple de 1) est un isomorphisme d'anneaux strictement croissant.

Démonstration. On vérifie facilement que φ est un morphisme d'anneaux : ceci résulte directement des propriétés des multiples.

Montrons que φ est injective. Pour cela, montrons par récurrence sur n que pour tout $n \in \mathbb{N}^*$, $\varphi(n) > 0$.

- Comme \mathbb{K} est un corps, $1 \neq 0$, donc 1 < 0 ou 1 > 0. Par la règle des signes, $1 \times 1 > 0$. Or $1 \times 1 = 1$.
- Soit $n \in \mathbb{N}^*$. Supposons n1 > 0. On a alors

$$(n+1)1 = n1 + 1 > n1 + 0 = n1 > 0$$

De là, pour tout $n \in \mathbb{Z}_{-}^{*}$, n1 = -(-n)1 < 0. Ainsi, $\ker \varphi = \{0\}$ et φ est injectif.

Enfin, par définition de \mathbb{Z}' , $\varphi(\mathbb{Z}) = \mathbb{Z}'$. Ainsi, φ est surjectif. φ est donc un isomorphisme d'anneaux.

Soient $m, n \in \mathbb{Z}$. Supposons m < n. On a donc n - n > 0 et donc, comme nous l'avons déjà vu, (n - m)1 = n1 - m1 > 0. De là,

$$\varphi(m) = m1 < n1 = \varphi(n)$$

Définition 3. Soit $x \in \mathbb{K}$. Soit $r = \frac{a}{b} \in \mathbb{Q}$, où $a, b \in \mathbb{Z}$ et $b \neq 0$. Le r^{e} multiple de x est

$$rx = \frac{ax}{b1}$$

Il s'agit de voir que cette définition a bien un sens, c'est à dire qu'elle ne dépend que du rationnel r, et pas des entiers a et b choisis pour le représenter. Pour cela, supposons que $r=\frac{a}{b}=\frac{c}{d}$ où $a,b,c,d\in\mathbb{Z}$ et $b,d\neq 0$. On a donc ad=bc. De là.

$$adx = bcx$$

ce qui peut aussi s'écrire

$$(ax)(d1) = (b1)(cx)$$

et donc

$$\frac{ax}{b1} = \frac{cx}{d1}$$

Notons

$$\mathbb{Q}' = \{r1 : r \in \mathbb{Q}\}\$$

Proposition 9. L'application $\psi : \mathbb{Q} \longrightarrow \mathbb{K}$ définie pour tout $r \in \mathbb{Q}$ par

$$\psi(r) = r1$$

est un isomorphisme strictement croissant de \mathbb{Q} sur \mathbb{Q}' .

Démonstration. On vérifie facilement que ψ est un morphisme de corps de \mathbb{Q} sur \mathbb{Q}' .

Il reste à vérifier que ψ est strictement croissant. Soient $x,y \in \mathbb{Q}$. Posons $x = \frac{a}{b}$ et $y = \frac{c}{d}$, où $a,b,c,d \in \mathbb{Z}$ et b,d>0. Supposons x < y, c'est à dire ad < bc. On en déduit $\varphi(ad) < \varphi(bc)$, c'est à dire $a1 \times d1 < b1 \times c1$, d'où, facilement, $\psi(x) < \psi(y)$. \square

Ainsi, si \mathbb{K} est un corps ordonné, les multiples rationnels de 1 forment un sous-corps de \mathbb{K} isomorphe, en tant que corps ordonné, à \mathbb{Q} . Nous identifierons ce sous-corps à \mathbb{Q} , sauf lorsque ceci prêtera à confusion.

1.3 Valeur absolue

Définition 4. Soit $\mathbb K$ un corps ordonné. Pour tout $x\in\mathbb K,$ la valeur absolue de x est

$$|x| = \max(-x, x)$$

Bien entendu, |x| = x si $x \ge 0$ et -x si $x \le 0$. Remarquons aussi que $|x| \ge 0$. La valeur absolue vérifie les propriétés usuelles.

Proposition 10. *Soit* \mathbb{K} *un corps ordonné. Pour tous* $x, y \in \mathbb{K}$,

- |x| > 0
- $\bullet \ |x| = 0 \iff x = 0.$
- $\bullet ||xy| = |x||y|.$
- $\bullet ||x+y| \le |x| + |y|.$
- $|x y| \ge ||x| |y||$.

Démonstration. Les deux premiers points sont faciles. Pour le troisième point, il suffit de considérer 4 cas, selon que x et y sont positifs ou négatifs. Montrons l'inégalité triangulaire. Soient $x, y \in \mathbb{K}$. On a $x \leq |x|$ et $y \leq |y|$, donc

$$x + y \le |x| + |y|$$

De même, $-x \le |x|$ et $-y \le |y|$, donc

$$-(x+y) \le |x| + |y|$$

Comme |x + y| est égal à x + y ou -x - y, on en déduit que

$$|x+y| \le |x| + |y|$$

Le dernier point est une conséquence du précédent. Soient $x,y\in\mathbb{K}.$ On a

$$|x| = |(x - y) + y| \le |x - y| + |y|$$

De là,

$$|x| - |y| \le |x - y|$$

En échangeant les rôles de x et y, on obtient aussi que

$$|y| - |x| \le |y - x| = |x - y|$$

D'où, facilement, le résultat. □

2 Suites de Cauchy

Dans toute cette section, $(\mathbb{K}, +, \times, \leq)$ désigne un corps ordonné.

2.1 Suites à valeurs dans un corps ordonné

Définition 5. Soit $a \in \mathbb{K}^{\mathbb{N}}$. Soit $\ell \in \mathbb{K}$. La suite a tend vers ℓ si

$$\forall \varepsilon \in \mathbb{K}_{+}^{*}, \exists N \in \mathbb{N}, \forall n \geq N, |a_{n} - \ell| \leq \varepsilon$$

On vérifie facilement les propriété usuelles des limites : unicité de la limite, opérations sur les limites, passage à la limite dans les inégalités, suites extraites, etc.

2.2 Suites de Cauchy

Définition 6. Soit $a \in \mathbb{K}^{\mathbb{N}}$. La suite a est une suite de Cauchy lorsque

$$\forall \varepsilon \in \mathbb{K}_{+}^{*}, \exists N \in \mathbb{N}, \forall m \geq N, \forall n \geq N, |a_{m} - a_{n}| \leq \varepsilon$$

Si la suite a est de Cauchy, alors $a_{n+1}-a_n$ tend vers 0 lorsque n tend vers l'infini. La réciproque est fausse. Cela dit, si $a_{n+1}-a_n$ tend « suffisamment vite » vers 0, alors la suite est de Cauchy. Énonçons par exemple le résultat suivant.

Proposition 11. Soit a une suite d'éléments de \mathbb{K} . On suppose qu'il existe un rationnel k tel que $0 \le k < 1$ et, pour tout entier n assez grand,

$$|a_{n+1} - a_n| \le k|a_n - a_{n-1}|$$

Alors la suite a est une suite de Cauchy.

Démonstration. Soit $N \in \mathbb{N}$ tel que pour tout n > N,

$$|a_{n+1} - a_n| \le k|a_n - a_{n-1}|$$

Par une récurrence facile, on montre que pour tout $n \geq N$,

$$|a_{n+1} - a_n| \le k^{n-N} |a_{N+1} - a_N|$$

Soient $m, n \geq N$. Prenons par exemple $n \leq m$. On a

$$|a_m - a_n| = \left| \sum_{j=n}^{m-1} (a_{j+1} - a_j) \right|$$

$$\leq \sum_{j=n}^{m-1} |a_{j+1} - a_j|$$

$$\leq |a_{N+1} - a_N| \sum_{j=n}^{m-1} k^{j-N}$$

$$= |a_{N+1} - a_N| \frac{k^{n-N}}{1 - k}$$

Soit $\varepsilon \in \mathbb{K}_+^*$. Comme $0 \le k < 1$, k^{n-N} tend vers 0 lorsque n tend vers l'infini. De là, il existe un entier N' tel que pour tout $n \ge N'$,

$$|a_{N+1} - a_N| \frac{k^{n-N}}{1-k} \le \varepsilon$$

Ainsi, pour tous $m, n \ge \max(N, N')$ tels que $n \le m$,

$$|a_m - a_n| \le \varepsilon$$

La suite a est donc une suite de Cauchy. \square

2.3 Suites de Cauchy et suites convergentes

Proposition 12. Toute suite convergente d'éléments de \mathbb{K} est une suite de Cauchy.

Démonstration. Soit $a \in \mathbb{K}^{\mathbb{N}}$. Supposons que a converge vers $\ell \in \mathbb{K}$. Soit $\varepsilon \in \mathbb{K}_+^*$. Il existe $N \in \mathbb{N}$ tel que pour tout $n \geq \mathbb{N}$, $|a_n - \ell| \leq \frac{1}{2}\varepsilon$. Soient $m, n \geq \mathbb{N}$. On a

$$|a_m - a_n| = |(a_m - \ell) + (\ell - a_n)| \le |a_m - \ell| + |a_n - \ell| \le \frac{1}{2}\varepsilon + \frac{1}{2}\varepsilon = \varepsilon$$

La question de la réciproque est le point central de cet article. Nous verrons plus loin qu'il existe des suites de Cauchy de rationnels qui divergent dans \mathbb{Q} . L'idée de la construction de \mathbb{R} est justement de fabriquer un corps ordonné dans lequel les suites de Cauchy convergent.

Définition 7. Le corps ordonné \mathbb{K} est *complet* (ou plus rigoureusement Cauchycomplet) si toute suite de Cauchy d'éléments de \mathbb{K} est convergente.

Suites de Cauchy et suites bornées

Proposition 13. Toute suite de Cauchy est bornée.

Démonstration. Soit $a \in \mathbb{K}^{\mathbb{N}}$ une suite de Cauchy. Il existe $N \in \mathbb{N}$ tel que pour tous $m, n \ge N, |a_m - a_n| \le 1$. Soit $n \ge N$. On a alors, en prenant m = N, $|a_n - a_N| \le 1$. De là, pour tout $n \ge N$,

$$|a_n| = |(a_n - a_N) + a_N| \le |a_n - a_N| + |a_N| \le 1 + |a_N|$$

Ainsi, pour tout $n \in \mathbb{N}$,

$$|a_n| < \max(|a_0|, \dots, |a_{N-1}|, 1 + |a_N|)$$

Bien entendu, il existe des suites bornées qui ne sont pas de Cauchy, comme par exemple la suite de terme général $(-1)^n$.

2.5L'anneau des suites de Cauchy

Notons \mathcal{C} l'ensemble des suites de Cauchy d'éléments de \mathbb{K} .

Proposition 14. $(C, +, \times)$ est un anneau commutatif.

Démonstration. Nous allons montrer que $\mathcal C$ est un sous-anneau de l'anneau commutatif $(\mathbb{K}^{\mathbb{N}}, +\times)$ des suites d'éléments de \mathbb{K} .

La suite constante égale à 1, neutre pour la multiplication des suites, est clairement une suite de Cauchy.

Soient $a, b \in \mathcal{C}$. Soit $\varepsilon \in \mathbb{K}_+^*$. Il existe deux entiers N_1 et N_2 tels que

- pour tous $m, n \ge \mathbb{N}_1$, $|a_m a_n| \le \frac{1}{2}\varepsilon$. pour tous $m, n \ge \mathbb{N}_2$, $|b_m b_n| \le \frac{1}{2}\varepsilon$.

Posons $N = \max(N_1, N_2)$. On a alors, pour tous $mn, n \ge N$,

$$|(a+b)_m - (a+b)_n| = |(a_m - a_n) + (b_m - b_n)| \le |a_m - a_n| + |b_m - b_n| \le \frac{1}{2}\varepsilon + \frac{1}{2}\varepsilon = \varepsilon$$

Ainsi, $a + b \in \mathcal{C}$.

Soient $a, b \in \mathcal{C}$. Notons M_a et M_b des majorants strictement positifs des suites |a| et |b|. Pour tous $m, n \in \mathbb{N}$, on a

$$\begin{aligned} |(ab)_m - (ab)_n| &= |a_m (b_m - b_n) + b_n (a_m - a_n)| \\ &\leq |a_m| |b_m - b_n| + |b_n| |a_m - a_n| \\ &\leq M_a |b_m - b_n| + M_b |a_m - a_n| \end{aligned}$$

Soit $\varepsilon \in \mathbb{K}_{+}^{*}$. Il existe deux entiers N_1 et N_2 tels que

- Pour tous $m, n \ge N_1$, $|a_m a_n| \le \frac{1}{2M_b} \varepsilon$.
- Pour tous $m, n \geq N_2$, $|b_m b_n| \leq \frac{1}{2M_a} \varepsilon$.

Soit $N = \max(N_1, N_2)$. On a pour tous $m, n \geq N$,

$$|(ab)_m - (ab)_n| \le M_a|b_m - b_n| + M_b|a_m - a_n| \le \varepsilon$$

Ainsi, $ab \in \mathcal{C}$. \square

2.6 Racine carrée

Considérons ce paragraphe comme un intermède. En fait, nous aurons besoin de ce résultat à la fin de l'article. Nous allons montrer que dans un corps ordonné complet, tous les éléments positifs du corps possèdent une racine carrée.

Proposition 15. Soit \mathbb{K} un corps ordonné complet. Pour tout $x \in \mathbb{K}_+^*$, il existe un unique $t \in \mathbb{K}_+^*$ tel que $t^2 = x$.

Démonstration. Soit $x \in \mathbb{K}_+^*$. L'unicité est facile. Si $t, t' \in \mathbb{K}_+^*$ vérifient

$$t^2 = t'^2 = x$$

on a alors

$$(t - t')(t + t') = 0$$

et donc $t' = \pm t$. Comme t, t' > 0, on a nécessairement t' = t.

Pour la preuve de l'existence, remarquons que si 0 < x < 1, alors $\frac{1}{x} > 1$. Ainsi, il suffit de faire la démonstration pour x > 1, ce que nous supposons dorénavant.

Considérons la suite a définie par $a_0 = x$ et, pour tout $n \in \mathbb{N}$,

$$a_{n+1} = \frac{a_n^2 + x}{2a_n}$$

Les a_n sont clairement des éléments de \mathbb{K} strictement positifs.

Montrons tout d'abord que pour tout $n \in \mathbb{N}$, $a_n^2 \geq x$. Soit $n \in \mathbb{N}$. On a

$$a_{n+1}^{2} - x = \left(\frac{a_{n}^{2} + x}{2a_{n}}\right)^{2} - x$$

$$= \frac{a_{n}^{4} - 2a_{n}^{2}x + x^{2}}{4a_{n}^{2}}$$

$$= \frac{(a_{n}^{2} - x)^{2}}{4a_{n}^{2}}$$

$$\geq 0$$

De plus, $a_0^2 = x^2 \ge x$ car x > 1.

Montrons que la suite a est de Cauchy. On a pour tout $n \in \mathbb{N}^*$,

$$a_{n+1} - a_n = \frac{a_n^2 + x}{2a_n} - \frac{a_{n-1}^2 + x}{2a_{n-1}}$$

$$= \frac{(a_n^2 + x)a_{n-1} - (a_{n-1}^2 + x)a_n}{2a_n a_{n-1}}$$

$$= (a_n - a_{n-1})\frac{a_n a_{n-1} - x}{2a_n a_{n-1}}$$

$$= \frac{1}{2}(a_n - a_{n-1})\left(1 - \frac{x}{a_n a_{n-1}}\right)$$

Remarquons que

$$(a_n a_{n-1})^2 = a_n^2 a_{n-1}^2 \ge x^2$$

et donc $a_n a_{n-1} \ge x$. De là,

$$0 \le 1 - \frac{x}{a_n a_{n-1}} < 1$$

et donc

$$|a_{n+1} - a_n| \le \frac{1}{2}|a_n - a_{n-1}|$$

Par la proposition 11, la suite a est de Cauchy. Comme \mathbb{K} est complet, elle converge. Soit t sa limite.

Comme pour tout $n \in \mathbb{N}$, $a_n^2 \ge x > 1$, on a $a_n \ge 1$. Par passage à la limite, $t \ge 1 > 0$. En passant à la limite dans la relation de récurrence qui définit a, on a

$$t = \frac{t^2 + x}{2t}$$

et donc $t^2 = x$. \square

3 Suites de Cauchy de rationnels

Dans toute la suite, nous noterons $\mathcal C$ l'ensemble des suites de Cauchy de rationnels.

3.1 La non-complétude de $\mathbb Q$

Proposition 16. Il existe des suites de Cauchy de rationnels qui divergent.

Démonstration. Considérons la suite a définie par $a_0 = 2$ et, pour tout $n \in \mathbb{N}$,

$$a_{n+1} = \frac{a_n^2 + 2}{2a_n}$$

Reprenons la preuve faite dans le paragraphe précédent, avec x=2. La preuve que la suite a était de Cauchy n'utilisait pas la complétude de \mathbb{K} . Ainsi, a est une suite de Cauchy.

Nous avons également vu que si a converge, alors sa limite est un rationnel t>0 tel que $t^2=2$. Or, un tel rationnel n'existe pas. Supposons en effet son existence. Posons $t=\frac{p}{q}$ où $p,q\in\mathbb{N}^*$ et $p\wedge q=1$. On a alors $p^2=2q^2$. De là, $p\mid 2q^2$. Comme $p\wedge q^2=1$, on obtient par le lemme de Gauss que $p\mid 2$. Ainsi, p=1 ou p=2. De même, $q\mid p^2$. Comme $q\wedge p^2=1$, toujours avec le lemme de Gauss, on déduit $q\mid 1$ et donc q=1. Ainsi, t=1 ou t=2, contradiction. \square

3.2 Équivalence de suites de Cauchy

Définition 8. On définit une relation \simeq sur \mathcal{C} en posant, pour toutes suites $a,b\in\mathcal{C}$,

$$a \simeq b \iff a - b \longrightarrow 0$$

Proposition 17. La relation \simeq est une relation d'équivalence sur C.

Démonstration.

- Soit $a \in \mathcal{C}$. On a $a a = 0 \longrightarrow 0$, donc $a \simeq a$.
- Soient $a, b \in \mathcal{C}$. Supposons $a \simeq b$. On a $a b \longrightarrow 0$ et donc, en passant à l'opposé, $b a \longrightarrow 0$, d'où $b \simeq a$.
- Soient $a, b, c \in \mathcal{C}$. Supposons $a \simeq b$ et $b \simeq c$. On a $a-b \longrightarrow 0$ et $b-c \longrightarrow 0$ d'où, en sommant,

$$a-c = (a-b) + (b-c) \longrightarrow 0 + 0 = 0$$

Pour toute suite $a \in \mathcal{C}$, nous noterons [a] la classe d'équivalence de a modulo \simeq :

$$[a] = \{b \in \mathcal{C} : b - a \longrightarrow 0\}$$

3.3 L'ensemble \mathbb{R}

Appelons \mathbb{R} l'ensemble quotient \mathcal{C}/\simeq . On a donc

$$\mathbb{R} = \{ [a] : a \in \mathcal{C} \}$$

Remarque. L'ensemble \mathcal{Z} des suites de Cauchy de rationnels qui tendent vers 0 est un idéal de \mathcal{C} , et même un idéal maximal. Ceci entraı̂ne automatiquement que \mathbb{R} a une structure de corps. Dans ce qui suit, nous allons démontrer tout cela « à la main ».

4 Le corps des réels

4.1 Addition

Proposition 18. Soient $a, b, a', b' \in C$. On suppose $a \simeq a'$ et $b \simeq b'$. On a alors $a + b \simeq a' + b'$.

Démonstration. On a

$$(a' + b') - (a + b) = (a' - a) + (b' - b)$$

Comme la somme de deux suites qui tendent vers 0 tend encore vers 0, il en résulte que (a'+b')-(a+b) tend vers 0, et donc que $a+b\simeq a'+b'$. \square

Définition 9. Pour tous $a, b \in \mathcal{C}$, on pose

$$[a] + [b] = [a+b]$$

Grâce à la proposition précédente, la définition de [a] + [b] ne dépend que des classes de a et b, et pas des représentants a et b. Nous avons donc bien défini une opération dans \mathbb{R} .

Proposition 19. $(\mathbb{R},+)$ est un groupe abélien.

Démonstration.

• Soient x = [a] et y = [b] deux réels. On a

$$x + y = [a] + [b] = [a + b] = [b + a] = [b] + [a] = y + x$$

- De même, l'associativité de l'addition dans $\mathbb R$ résulte de l'associativité de l'addition dans $\mathcal C$.
- Le neutre de l'addition dans \mathbb{R} est la classe de la suite constante égale à 0, c'est à dire l'ensemble des suites de rationnels qui tendent vers 0.
- Si $x = [a] \in \mathbb{R}$, l'opposé de x est [-a], puisque

$$[a] + [-a] = [a - a] = [0]$$

4.2 Multiplication

Proposition 20. Soient $a, b, a', b' \in C$. On suppose $a \simeq a'$ et $b \simeq b'$. On a alors $ab \simeq a'b'$.

Démonstration. On a

$$a'b' - ab = (a' - a)b' + a(b' - b)$$

Les suites a et b' sont bornées (car de Cauchy), a'-a tend vers 0 et b'-b aussi. De là, a'b'-ab tend vers 0, et donc $ab \simeq a'b'$. \square

Définition 10. Pour tous $a, b \in \mathcal{C}$, on pose

$$[a][b] = [ab]$$

Grâce à la proposition précédente, la définition de [a][b] ne dépend que des classes de a et b, et pas des représentants a et b. Nous avons donc bien défini une opération dans \mathbb{R} .

Proposition 21. $(\mathbb{R}, +, \times)$ *est un anneau commutatif.*

Démonstration. Comme pour la preuve des propriétés de l'addition, cela résulte de ce que $(\mathcal{C}, +, \times)$ est un anneau commutatif. Par exemple, si x = [a], y = [b] et z = [c] sont trois réels, on a

$$(xy)z = ([a][b])[c] = [ab][c]$$

= $[(ab)c] = [a(bc)]$
= $[a][bc] = [a]([b][c])$
= $x(yz)$

Le neutre de la multiplication dans $\mathbb R$ est la classe de la suite constante égale à 1, c'est à dire l'ensemble des suites de rationnels qui tendent vers 1. \square

4.3 Inclusion des rationnels

Pour tout rationnel r, notons \underline{r} la suite constante égale à r. Cette suite est évidemment une suite de Cauchy. Considérons l'application $\varphi:\mathbb{Q}\longrightarrow\mathbb{R}$ définie par $\varphi(r)=[\underline{r}]$. On montre facilement que φ est un morphisme de corps. L'image de \mathbb{Q} par $\varphi,\mathbb{Q}'=\varphi(\mathbb{Q})$, est ainsi un sous-corps de \mathbb{R} isomorphe à \mathbb{Q} . Remarquons que les neutres pour l'addition et la multiplication dans \mathbb{R} sont $[\underline{0}]$ et $[\underline{1}]$.

4.4 Structure de corps

L'anneau \mathcal{C} n'est pas un corps. Ce n'est même pas un anneau intègre. Par exemple, considérons la suite a définie pour tout $n \in \mathbb{N}$ par $a_{2n} = \frac{1}{n+1}$ et $a_{2n+1} = 0$. Soit b la suite définie pour tout $n \in \mathbb{N}$ par $b_{2n} = 0$ et $b_{2n+1} = \frac{1}{n+1}$. Ces deux suites de rationnels tendent vers 0, elles sont donc de Cauchy. De plus, a et b sont non nulles et pourtant ab = 0. Le passage au quotient par la relation \simeq règle le problème.

Proposition 22. $(\mathbb{R}, +, \times)$ *est un corps.*

Démonstration. On a bien sûr $[\underline{0}] \neq [\underline{1}]$. Les neutres pour l'addition et la multiplication dans \mathbb{R} sont donc distincts. Soit x = [a] un réel différent de $[\underline{0}]$. La suite a est donc une suite de Cauchy de rationnels qui ne tend pas vers 0. Dit autrement,

$$\exists \alpha \in \mathbb{Q}_+^*, \forall N \in \mathbb{N}, \exists m \ge N, |a_m| > \alpha$$

Prenons un tel α et appliquons la propriété de Cauchy à $\frac{1}{2}\alpha$. Il existe $N \in \mathbb{N}$ tel que pour tous $m, n \geq N$,

$$|a_m - a_n| \le \frac{1}{2}\alpha$$

Soit $m \geq N$ tel que $|a_m| > \alpha$. On a alors pour tout $n \geq N$,

$$||a_n| - |a_m|| \le |a_n - a_m| \le \frac{1}{2}\alpha$$

De là, pour tout $n \geq N$,

$$-\frac{1}{2}\alpha \le |a_n| - |a_m| \le \frac{1}{2}\alpha$$

et donc

$$\frac{1}{2}\alpha < |a_m| - \frac{1}{2}\alpha \le |a_n|$$

Considérons la suite b de rationnels définie par

- $b_n = 0$ si n < N. $b_n = \frac{1}{a_n}$ si $n \ge N$.

Montrons que la suite b est de Cauchy. Pour tous $m, n \geq N$, on a

$$|b_m - b_n| = \left| \frac{1}{a_m} - \frac{1}{a_n} \right| = \left| \frac{a_n - a_m}{a_m a_n} \right| \le \frac{4}{\alpha^2} |a_n - a_m|$$

Soit $\varepsilon \in \mathbb{Q}_+^*$. La suite a étant de Cauchy, il existe un entier N' tel que pour tous $m, n \ge N'$

$$|a_n - a_m| \le \frac{\alpha^2 \varepsilon}{4}$$

Pour tous $m, n \ge \max(N, N')$, on a alors

$$|b_n - b_m| \le \varepsilon$$

On a donc $b \in \mathcal{C}$. De plus $(ab)_n = 1$ pour tout $n \geq N$, et donc $ab \simeq 1$. Ainsi, en posant y = [b], on a

$$xy = [\underline{1}]$$

Le réel x est donc inversible pour la multiplication. \square

5 Structure de corps ordonné

5.1 Une partition de \mathcal{C}

Proposition 23. Soit a une suite de Cauchy de rationnels. On est dans un, et un seul, des trois cas suivants :

- La suite a tend vers 0.
- Il existe un rationnel $\alpha > 0$ tel que pour tout entier n assez grand, $a_n \ge \alpha$.
- Il existe un rationnel $\alpha > 0$ tel que pour tout entier n assez grand, $a_n \leq -\alpha$.

Démonstration. Il est clair que les trois cas s'excluent mutuellement.

Supposons que a ne tend pas vers 0. Reprenons la preuve de l'inversibilité des réels non nuls. Il existe un rationnel $\alpha>0$ et un entier N' tels que pour tout $n\geq N', \, |a_n|\geq 2\alpha$. Par ailleurs, la propriété de Cauchy nous permet d'affirmer qu'il existe un entier N'' tel que pour tous $m,n\geq N'', \, |a_m-a_n|\leq \alpha$. Soit $N=\max(N',N'')$. Supposons par exemple que $a_N>0$. Comme $N\geq N'$, on a donc $a_N\geq 2\alpha$. On a pour tout $n\geq N, \, |a_n-a_N|\leq \alpha$, c'est à dire

$$-\alpha \le a_n - a_N \le \alpha$$

De là,

$$\alpha < a_N - \alpha \le a_n$$

Ainsi, pour tout $n \geq N, \, a_n \geq \alpha.$ Un raisonnement analogue permet de conclure si $a_N < 0.$

- Notons \mathcal{P} l'ensemble des suites $a \in \mathcal{C}$ telles qu'il existe un rationnel $\alpha > 0$ tel que pour tout entier n assez grand, $a_n \geq \alpha$.
- Notons \mathcal{N} l'ensemble des suites $a \in \mathcal{C}$ telles qu'il existe un rationnel $\alpha > 0$ tel que pour tout entier n assez grand, $a_n \leq -\alpha$.

La proposition précédente montre que les ensembles \mathcal{P} , \mathcal{N} et $\{\underline{0}\}$ sont disjoints et que, de plus,

$$\mathcal{N} \cup \{0\} \cup \mathcal{P} = \mathcal{C}$$

Remarquons également que si $a \in \mathcal{C}$, on a $a \in \mathcal{P}$ si et seulement si $-a \in \mathcal{N}$.

5.2 Passage au quotient

Proposition 24. Soient $a, b \in C$. On suppose que $a \in P$ et $a \simeq b$. Alors, $b \in P$.

On a évidemment un résultat analogue en remplaçant \mathcal{P} par \mathcal{N} .

Démonstration. Soient $\alpha \in \mathbb{Q}_+^*$ et $N' \in \mathbb{N}$ tels que pour tout $n \geq N'$, $a_n \geq \alpha$. Comme $a \simeq b$, la suite b-a tend vers 0. Il existe donc $N'' \in \mathbb{N}$ tel que pour tout $n \geq N''$, $|b_n - a_n| \leq \frac{1}{2}\alpha$. Soit $N = \max(N', N'')$. Soit $n \geq N$. On a

$$b_n \ge a_n - \frac{1}{2}\alpha \ge \frac{1}{2}\alpha$$

Ainsi, $b \in \mathcal{P}$. \square

Notons

$$P = \{[a] : a \in \mathcal{P}\}$$

$$N = \{[a] : a \in \mathcal{N}\}$$

Proposition 25. Les ensembles P, N et $\{[\underline{0}]\}$ forment une partition de \mathbb{R} .

Démonstration. Soit $x = [a] \in \mathbb{R}$. Par la proposition 23, on a $a \in \mathcal{P}$, ou $a \in \mathcal{N}$, ou [a] = [0]. Dit autrement, $x \in P$, $x \in N$ ou x = [0]. Ainsi,

$$N \cup \{0\} \cup P = \mathbb{R}$$

Il reste à voir que ces trois ensembles sont disjoints deux à deux. Soit $x \in P$. Il existe $a \in \mathcal{P}$ telle que x = [a]. Par la proposition 24, pour toute suite $b \simeq a$, $b \in \mathcal{P}$. De là, $x \neq [\underline{0}]$ et $x \notin N$. De même, si $x \in N$, alors $x \neq [\underline{0}]$ et $x \notin P$. Enfin, $[\underline{0}] \notin P$ et $[\underline{0}] \notin N$. \square

Proposition 26. Pour tout $x \in \mathbb{R}$, $x \in P \iff -x \in N$.

Démonstration. Soit $x = [a] \in \mathbb{R}$. Supposons $x \in P$. Il existe donc un rationnel $\alpha > 0$ tel que pour tout n assez grand, $a_n \ge \alpha$. De là, pour tout n assez grand, $-a_n \le -\alpha$, et donc $-x = [-a] \in N$. La réciproque se montre de la même façon. \square

Proposition 27. Pour tous $x, y \in P$, x + y et xy appartiennent à P.

Démonstration. Soient x = [a] et y = [b] deux éléments de P. Il existe deux rationnels $\alpha, \beta > 0$ tels que pour tout entier n assez grand, $a_n \ge \alpha$ et $b_n \ge \beta$. De là, pour tout n assez grand, $a_n + b_n \ge \alpha + \beta$ et $a_n b_n \ge \alpha \beta$. Ainsi, les suites a + b et ab appartiennent à P et donc les réels x et y appartiennent à P. \square

Le corps \mathbb{R} , grâce aux ensembles N et P, est ainsi un corps ordonné. Nous noterons \leq la relation d'ordre correspondante, et < l'ordre strict associé.

5.3 Compatibilité avec l'ordre de $\mathbb Q$

Rappelons que pour tout $r \in \mathbb{Q}$, \underline{r} est la suite constante égale à r.

Proposition 28. Soient $r, s \in \mathbb{Q}$. On a $r < s \iff [\underline{r}] < [\underline{s}]$.

Démonstration. Supposons r < s. Soit $\alpha = s - r > 0$. On a évidemment $s - r \ge \alpha$, donc

$$[\underline{s}] - [\underline{r}] = [s - r] > [\underline{0}]$$

Ainsi, $[\underline{r}] < [\underline{s}]$. Inversement, supposons $[\underline{r}] < [\underline{s}]$, c'est à dire $[\underline{s} - \underline{r}] > [\underline{0}]$. Il existe donc un rationnel $\alpha > 0$ tel que pour tout n assez grand, $(\underline{s} - \underline{r})_n \geq \alpha$. Mais $(\underline{s} - \underline{r})_n = s - r$, donc $s - r \geq \alpha > 0$, d'où r < s. \square

Ainsi, l'ordre que nous avons défini sur $\mathbb R$ prolonge l'ordre usuel sur le corps $\mathbb Q$ des rationnels.

Dorénavant, nous identifierons le rationnel r avec le réel $[\underline{r}]$. Nous noterons donc 0, et pas $[\underline{0}]$, 1 et pas $[\underline{1}]$, etc.

5.4 Valeur absolue

Comme dans tout corps ordonné, on dispose dans \mathbb{R} de la notion de valeur absolue. Ici encore, il n'y a pas d'ambiguïté pour les rationnels. Si $a \in \mathbb{Q}$ est un rationnel positif, c'est aussi un réel positif. De même si a est négatif. Remarquons également le résultat suivant.

Proposition 29. Soit a une suite de rationnels. On a

$$|[a]| = [(|a_n|)_{n \in \mathbb{N}}]$$

Démonstration. Supposons par exemple [a] > 0 (les autres cas sont analogues). Il existe un rationnel $\alpha > 0$ et un entier $N \in \mathbb{N}$ tels que pour tout $n \geq N$, $a_n \geq \alpha$. On a donc pour tout $n \geq N$, $|a_n| = a_n$ et donc les suites $(|a_n|)_{n \in \mathbb{N}}$ et a ont les mêmes termes à partir du rang N. Ces deux suites sont donc équivalentes pour la relation \simeq , et ainsi,

$$[(|a_n|)_{n\in\mathbb{N}}] = [a]$$

6 La propriété d'Archimède

6.1 Corps archimédiens

Définition 11. Soit $(\mathbb{K}, +, \times \leq)$ un corps ordonné. Le corps \mathbb{K} est archimédien si pour tous $x, y \in \mathbb{K}_+^*$, il existe $m \in \mathbb{N}^*$ tel que mx > y.

Un exemple de corps ordonné Archimédien est vite trouvé.

Proposition 30. \mathbb{Q} est archimédien.

Démonstration. Soient $x, y \in \mathbb{Q}_+^*$. Posons $x = \frac{a}{b}$ et $y = \frac{c}{d}$, où $a, b, c, d \in \mathbb{N}^*$. Soit $m \in \mathbb{N}^*$. On a mx > y si et seulement si mad > bc. Un tel m existe, il suffit de prendre par exemple m = bc + 1. \square

Proposition 31. Soit \mathbb{K} un corps ordonné archimédien. Soient $x, y \in \mathbb{K}$. On suppose que x > 0. Alors, il existe un unique $m \in \mathbb{Z}$ tel que

$$mx \le y < (m+1)x$$

Démonstration. Commençons par l'unicité. Soient m, m' deux entiers relatifs vérifiant la propriété. On a donc mx < (m'+1)x. En multipliant cette inégalité par $\frac{1}{x} > 0$, il vient m < m' + 1 et donc $m \le m'$. De même, $m' \le m$.

Prouvons maintenant l'existence. Commençons par supposer que y>0. Considérons l'ensemble

$$E = \{ m \in \mathbb{N} : mx > y \}$$

Par la proposition précédente, E est une partie non vide de \mathbb{N} , qui admet donc un plus petit élément p. Clairement, $p \geq 1$. En posant m = p - 1, on a donc $m \in \mathbb{N}$, et x < (m+1)y. Comme m < p, on en déduit par la minimalité de p que $mx \leq y$.

Si y=0, m=0 convient. Si y<0, il suffit d'appliquer ce qui précède à -y. \square

Proposition 32. Soit \mathbb{K} un corps ordonné. Le corps \mathbb{K} est archimédien si et seulement si \mathbb{Q} est dense dans \mathbb{K} .

Démonstration. Par \mathbb{Q} , nous entendons bien entendu les fractions de multiples de 1.

(⇒) Supposons \mathbb{K} archimédien. Soit $x \in \mathbb{K}_+^*$. Par la propriété d'Archimède appliquée à 1 et $\frac{1}{x}$, il existe $m \in \mathbb{N}^*$ tel que $\frac{1}{x} < m$. On en déduit que $0 < \frac{1}{m} < x$. On conclut en posant $r = \frac{1}{m}$.

Soient maintenant $x,y\in\mathbb{K}$ tels que x< y. Comme y-x>0, il existe $s\in\mathbb{Q}$ tel que 0< s< y-x. Appliquons le corollaire de la propriété d'Archimède. Il existe $m\in\mathbb{Z}$ tel que

$$ms \le x < (m+1)s$$

Notons r = (m+1)s. On a $r \in \mathbb{Q}$ et

$$r - s \le x < r$$

De la première inégalité, on déduit que

$$r \le x + s < x + (y - x) = y$$

Ainsi, x < r < y.

(\Leftarrow) Supposons que $\mathbb Q$ est dense dans $\mathbb K$. Soient $x,y\in\mathbb K_+^*$. Soit $r\in\mathbb Q$ tel que

$$\frac{y}{x} < r < \frac{y}{x} + 1$$

Un tel r est strictement positif, puisque $\frac{y}{x}>0$. Soit $m\in\mathbb{N}^*$ tel que $r\leq m$. On a $y< rx\leq mx$, d'où la propriété d'Archimède. \square

Venons-en à ce qui nous intéresse.

6.2 Le cas des réels

Proposition 33. \mathbb{R} est archimédien.

Démonstration. Soient $x, y \in \mathbb{R}_+^*$. Posons x = [a] et y = [b]. Il existe $\alpha, \beta \in \mathbb{Q}_+^*$ tels que pour tout n assez grand on ait $a_n \ge \alpha$ et $b_n - a_n \ge \beta$, et donc $b_n \ge \alpha + \beta$.

La suite b est de Cauchy, donc majorée par un rationnel $\gamma > 0$. Soit $m \in \mathbb{N}$ tel que $m\alpha \ge \gamma + 1$. On a alors pour tout entier n assez grand,

$$ma_n \ge m\alpha \ge \gamma + 1 \ge b_n + 1$$

De là, pour tout n assez grand,

$$ma_n - b_n \ge 1$$

et donc

$$mx - y = [ma - b] > 0$$

Puisque \mathbb{R} est un corps ordonné archimédien, on a donc la propriété ci-dessous.

Proposition 34. \mathbb{Q} *est dense dans* \mathbb{R} .

7 Complétude

Nous sommes maintenant en possession du corps ordonné $(\mathbb{R},+,\times,\leq)$. \mathbb{R} est un corps ordonné archimédien, tout comme \mathbb{Q} . En quoi \mathbb{R} est-il « meilleur » que \mathbb{Q} ? Nous allons prouver dans cette section que \mathbb{R} est complet.

7.1 Levée d'ambiguïtés

Il s'agit avant tout de lever quelques ambiguïtés possibles concernant les suites de rationnels. Pour l'instant, parlons de \mathbb{Q} -convergence pour une suite de rationnel qui tend vers un rationnel dans le corps ordonné $(\mathbb{Q},+,\times,\leq)$, et de \mathbb{R} -convergence pour une suite réelle qui tend vers un réel dans le corps ordonné $(\mathbb{R},+,\times,\leq)$.

Proposition 35. Soit a une suite de rationnels. Soit $r \in \mathbb{Q}$. La suite a \mathbb{Q} -converge vers r si et seulement si elle \mathbb{R} -converge vers r.

Démonstration. Supposons que a \mathbb{Q} -converge vers r. Soit $\varepsilon \in \mathbb{R}_+^*$. Par la densité de \mathbb{Q} dans \mathbb{R} , il existe $\varepsilon' \in \mathbb{Q}_+^*$ tel que $0 < \varepsilon' \le \varepsilon$. Soit $N \in \mathbb{N}$ tel que pour tout $n \ge N$, $|a_n - r| \le \varepsilon'$. On a alors pour tout $n \ge N$, $|a_n - r| \le \varepsilon$. Ainsi, la suite a \mathbb{R} -converge vers r.

Supposons, inversement, que a \mathbb{R} -converge vers r. Soit $\varepsilon \in \mathbb{Q}_+^*$. Alors, avec nos identifications, $\varepsilon \in \mathbb{R}_+^*$. Il existe donc $N \in \mathbb{N}$ tel que pour tout $n \geq N$, $|a_n - r| \leq \varepsilon$. \square

Il n'est donc plus nécessaire de faire la distinction, pour les suites de rationnels, entre \mathbb{Q} -convergence et \mathbb{R} -convergence. Remarquons toutefois qu'il est tout à fait possible qu'une suite de rationnels soit \mathbb{Q} -divergente, mais qu'elle soit \mathbb{R} -convergente. Dans ce cas, par ce qui précède, sa \mathbb{R} -limite ne peut pas être un rationnel.

De la même façon, parlons provisoirement de suites de rationnels \mathbb{Q} -Cauchy et de suites de réels \mathbb{R} -Cauchy.

Proposition 36. Soit a une suite de rationnels. Alors, a est \mathbb{Q} -Cauchy si et seulement si a est \mathbb{R} -Cauchy.

Démonstration. Supposons que a est \mathbb{Q} -Cauchy. Soit $\varepsilon \in \mathbb{R}_+^*$. Il existe $\varepsilon' \in \mathbb{Q}_+^*$ tel que $\varepsilon' \leq \varepsilon$. Comme la suite a est \mathbb{Q} -Cauchy, il existe $N \in \mathbb{N}$ tel que pour tous $m, n \geq N$, $|a_n - a_m| \leq \varepsilon'$. A fortiori, $|a_n - a_m| \leq \varepsilon$. Ainsi, a est \mathbb{R} -Cauchy.

Supposons inversement que a est \mathbb{R} -Cauchy. Soit $\varepsilon \in \mathbb{Q}_+^*$. Avec nos identifications, on a aussi $\varepsilon \in \mathbb{R}_+^*$. Il existe donc $N \in \mathbb{N}$ tel que pour tous $m, n \geq N$, $|a_n - a_m| \leq \varepsilon$. \square

7.2 La complétude de \mathbb{R}

Jusqu'à présent, rien ne nous permet d'affirmer qu'il existe des irrationnels. Notre construction de $\mathbb R$ pourrait fort bien ne rien faire d'autre que produire une copie de $\mathbb Q$. Bien évidemment, c'est loin d'être le cas. Nous avons vu qu'il existe des suites de Cauchy de rationnels qui $\mathbb Q$ -divergent. Nous allons montrer que ces suites $\mathbb R$ -convergent. Comme nous l'avons déjà signalé, leur limite est forcément un irrationnel.

Proposition 37. Soit a une suite de rationnels \mathbb{Q} -Cauchy. Alors, la suite a \mathbb{R} -converge vers le réel [a].

Démonstration. Nous allons ici devoir revenir un peu à nos notations d'origine

pour les rationnels. Pour tout $n \in \mathbb{N}$, on a

$$a_n - [a] = [(a_n, a_n, a_n, \ldots)] - [(a_0, a_1, a_2, \ldots)]$$

= $[(a_n - a_0, a_n - a_1, a_n - a_2, \ldots)]$
= $[(a_n - a_m)_{m \in \mathbb{N}}]$

Soit $\varepsilon \in \mathbb{R}_+^*$. La suite a est \mathbb{Q} -Cauchy, donc \mathbb{R} -Cauchy. Il existe donc $N \in \mathbb{N}$ tel que pour tous $m, n \geq N, |a_n - a_m| \leq \varepsilon$. Par la proposition 29, on a

$$|a_n - [a]| = [(|a_n - a_m|)_{m \in \mathbb{N}}]$$

De là, pour tout $n \geq N$, $|a_n - [a]| \leq \varepsilon$. \square

Proposition 38. Soit a une suite de Cauchy de réels. Alors, la suite a converge.

Démonstration. Pour tout $n \in \mathbb{N}$, soit $r_n \in \mathbb{Q}$ tel que

$$|a_n - r_n| \le \frac{1}{n+1}$$

Un tel r_n existe par la densité de $\mathbb Q$ dans $\mathbb R$. Montrons que la suite r est $\mathbb Q$ -Cauchy. Soit $\varepsilon \in \mathbb Q_+^*$. Soit $\mathbb N' \in \mathbb N$ tel que $\frac{1}{N'+1} < \frac{1}{3}\varepsilon$. Comme la suite a est une suite de Cauchy, il existe $N'' \in \mathbb N$ tel que pour tous $m, n \geq N''$,

$$|a_m - a_n| \le \frac{1}{3}\varepsilon$$

Soit $N = \max(N', N'')$. Soient $m, n \ge N$. On a

$$|r_n - r_m| = |(r_n - a_n) + (a_n - a_m) + (a_m - r_m)|$$

$$\leq |r_n - a_n| + |a_n - a_m| + |a_m - r_m|$$

$$\leq \frac{1}{3}\varepsilon + \frac{1}{3}\varepsilon + \frac{1}{3}\varepsilon$$

$$= \varepsilon$$

Ainsi, la suite r est \mathbb{Q} -Cauchy. Par la proposition 37, elle converge donc vers le réel $\ell = [r]$. Montrons que la suite a converge vers ℓ .

Soit $\varepsilon \in \mathbb{R}_+^*$. Soit $N' \in \mathbb{N}$ tel que pour tout $n \ge N'$, $|r_n - \ell| \le \frac{1}{2}\varepsilon$. Soit $N'' \in \mathbb{N}$ tel que $\frac{1}{N''+1} \le \frac{1}{2}\varepsilon$. Soit $N = \max(N', N'')$. On a alors pour tout $n \ge N$,

$$|a_n - \ell| = |(a_n - r_n) + (r_n - \ell)|$$

$$\leq |a_n - r_n| + |r_n - \ell|$$

$$\leq \frac{1}{2}\varepsilon + \frac{1}{2}\varepsilon$$

$$= \varepsilon$$

Pour résumer tout ce qui précède, on a le théorème suivant.

Théorème 39. \mathbb{R} est un corps ordonné archimédien complet.

7.3 Suites monotones

Parlons un peu de suites monotones. Le résultat ci-dessous est valable dans n'importe quel corps ordonné archimédien complet. Cela dit, d'ici la fin de cet article, nous saurons qu'il n'existe pas beaucoup de tels corps . . .

Proposition 40. Soit \mathbb{K} un corps ordonné archimédien complet. Toute suite croissante et majorée d'éléments de \mathbb{K} est convergente.

Démonstration. Soit a une suite croissante d'éléments de \mathbb{K} . Supposons que la suite a n'est pas de Cauchy. Il existe donc $\varepsilon \in \mathbb{K}_+^*$ tel que pour tout $N \in \mathbb{N}$, il existe $m, n \geq N$ tels que $|a_m - a_n| > \varepsilon$. Par la croissance de a, il existe donc $n \geq m \geq N$ tels que

$$a_n > a_m + \varepsilon \ge a_N + \varepsilon$$

Posons $n_0=0.$ Puis pour tout $k\in\mathbb{N},$ en prenant $N=n_k$ ci-dessus, soit $n_{k+1}>n_k$ tel que

$$a_{n_{k+1}} > a_{n_k} + \varepsilon$$

Par une récurrence immédiate, on a pour tout $k \in \mathbb{N}$,

$$a_{n_k} \ge a_0 + k\varepsilon$$

Il en résulte, par la propriété d'Archimède, que a n'est pas majorée.

En contraposant, on obtient donc que si a est une suite croissante et majorée d'éléments de \mathbb{K} , alors la suite a est de Cauchy, et donc converge. \square

Bien entendu (par exemple par un passage à l'opposé), toute suite décroissante et minorée de réels converge.

Définition 12. Soient a et b deux suites à valeurs dans un corps ordonné. Les suites a et b sont adjacentes si

- L'une croît.
- L'autre décroît.
- Leur différence tend vers 0.

Proposition 41. Soit \mathbb{K} un corps ordonné archimédien complet. Soient a et b deux suites adjacentes d'éléments de \mathbb{K} . Alors a et b convergent vers une même limite $\ell \in \mathbb{K}$. En supposant par exemple a croissante et b décroissante, on a de plus pour tout $n \in \mathbb{N}$,

$$a_n \le \ell \le b_n$$

Démonstration. Supposons pour fixer les idées a croissante et b décroissante. Supposons un instant qu'il existe $N \in \mathbb{N}$ tel que $a_N > b_N$. On a alors pour tout $n \geq N$,

$$a_n \ge a_N > b_N \ge b_n$$

et donc

$$a_n - b_n \ge a_N - b_N$$

En passant à la limite, on obtient $0 \le a_N - b_N$, contradiction. Ainsi, pour tout $n \in \mathbb{N}$, $a_n \le b_n$. La suite b étant décroissante, on a pour tout $n \in \mathbb{N}$, $b_n \le b_0$ et donc aussi $a_n \le b_0$. Ainsi, la suite a est croissante et majorée par b_0 , donc convergente. Notons ℓ sa limite. De même, la suite b converge vers un réel ℓ' . Comme a-b tend vers 0, on en déduit que $\ell=\ell'$.

Pour tous entiers naturels $n \leq m$, on a, comme la suite a est croissante, $a_n \leq a_m$. De là, en faisant tendre m vers l'infini, $a_n \leq \ell$. De même, $\ell \leq b_n$. \square

8 Parties de \mathbb{R}

Beaucoupe de cours d'Analyse caractérisent le corps des réels par le fait que toute partie non vide et majorée de \mathbb{R} possède une borne supérieure. Nous ne pouvons pas passer cela sous silence.

Proposition 42. Soit \mathbb{K} un corps ordonné archimédien complet. Toute partie de \mathbb{K} non vide et majorée possède une borne supérieure.

Nous allons montrer ce résultat en plusieurs étapes.

Soit A une partie non vide et majorée de \mathbb{K} . Notons B l'ensemble des majorants de A. Remarquons que B est non vide, car A est majorée.

Soit $x_0 \in A$. Soit $y_0 \in B$. Pour tout $n \in \mathbb{N}$, supposant définis x_n et y_n , soit $m_n = \frac{1}{2}(x_n + y_n)$.

- Si $m_n \in B$, on pose $x_{n+1} = x_n$ et $y_{n+1} = m_n$.
- Sinon, m_n ne majore pas A. On prend alors pour x_{n+1} un élément de A supérieur à m_n et $y_{n+1} = y_n$.

Une récurrence facile montre que

- Pour tout $n \in \mathbb{N}$, $x_n \in A$.
- Pour tout $n \in \mathbb{N}, y_n \in B$.
- La suite $(x_n)_{n\in\mathbb{N}}$ est croissante.
- La suite $(y_n)_{n\in\mathbb{N}}$ est décroissante.

De plus, comme B est l'ensemble des majorants de A, on a pour tous $m, n \in \mathbb{N}$, $x_m \leq y_n$.

Lemme 43. Les suites x et y sont adjacentes.

Démonstration. Il reste juste à prouver que x-y tend vers 0. Montrons par récurrence sur n que pour tout $n \in \mathbb{N}$,

$$y_n - x_n \le \frac{y_0 - x_0}{2^n}$$

C'est évident pour n=0. Soit $n \in \mathbb{N}$. Supposons l'inégalité vérifiée par x_n et y_n . En reprenant les notations vues plus haut, deux cas surviennent.

• Si $m_n \in B$, alors

$$y_{n+1} - x_{n+1} = m_n - x_n = \frac{1}{2}(y_n - x_n) \le \frac{1}{2^{n+1}}(y_0 - x_0)$$

• Si $m_n \in B$, alors $m_n \le x_{n+1}$ et

$$y_{n+1} - x_{n+1} = y_n - x_{n+1} \le y_n - m_n = \frac{1}{2}(y_n - x_n) \le \frac{1}{2^{n+1}}(y_0 - x_0)$$

Rappelons que l'on a aussi pour tout $n \in \mathbb{N}$, $0 \le y_n - x_n$. Comme $\frac{1}{2^n}$ tend vers 0 lorsque n tend vers l'infini, il en résulte que $y_n - x_n$ tend aussi vers 0. \square

Les suites x et y étant adjacentes, elles convergent toutes deux vers une même limite $\ell \in \mathbb{K}$.

Nous voici arrivés.

Lemme 44. ℓ est la borne supérieure de A.

Démonstration. Soit $a \in A$. Soit $\varepsilon \in \mathbb{K}_+^*$. Comme la suite b tend vers ℓ , il existe $n \in \mathbb{N}$ tel que $b_n \leq \ell + \varepsilon$. Or, b_n majore A, donc $a \leq b_n \leq \ell + \varepsilon$ et donc $a \leq \ell + \varepsilon$. Ceci étant vrai pour tout $\varepsilon > 0$, on en déduit que $a \leq \ell$. Ainsi, ℓ majore A et donc $\ell \in B$.

Soit $b \in B$. Soit $\varepsilon \in \mathbb{K}_+^*$. Comme la suite a tend vers ℓ , il existe $n \in \mathbb{N}$ tel que $\ell - \varepsilon \leq a_n$. Or, b majore A, donc $\ell - \varepsilon \leq a_n \leq b$ et donc $\ell - \varepsilon \leq b$. Ceci étant vrai pour tout $\varepsilon > 0$, on en déduit que $\ell \leq b$. Ainsi, ℓ est le plus petit élément de B. \square

9 L'unicité de \mathbb{R}

Une remarque anodine faite un peu plus haut disait qu'il n'existe pas beaucoup de corps ordonnés archimédiens complet. En fait, il n'en existe qu'un, à isomorphisme près.

9.1 Le théorème

Théorème 45. Soit $(\mathbb{K},+,\times,\leq)$ un corps ordonné. On a équivalence entre

(i) K est archimédien et complet.

- (ii) Toute partie de K non vide et majorée possède une borne supérieure.
- (iii) Il existe un unique isomorphisme de \mathbb{K} sur \mathbb{R} .

Nous avons pris soin, dans ce qui précède, de bien distinguer les propriétés spécifiques aux réels et à la façon dont les réels ont été construits, et les propriétés vraies dans tout corps ordonné. Ainsi, nous avons déjà prouvé que $(i) \implies (ii)$. Par ailleurs, nous avons prouvé que \mathbb{R} vérifie (i) (et aussi (ii)). Ces deux propriétés se conservent par isomorphisme (nous nous dispenserons de le vérifier), et donc $(iii) \implies (i)$.

Il reste donc à vérifier, par exemple, que $(ii) \implies (i)$ et $(i) \implies (iii)$.

$$9.2 \quad (ii) \implies (i)$$

Donnons nous un corps ordonné $(\mathbb{K},+,\times,\leq)$ dont toute partie non vide et majorée possède une borne supérieure.

Proposition 46. K est archimédien.

Démonstration. Soient $x, y \in \mathbb{K}_+^*$. Supposons que pour tout $m \in \mathbb{N}$, $mx \leq y$. Considérons l'ensemble

$$E = \{mx : m \in \mathbb{N}\}$$

L'ensemble E est une partie de \mathbb{K} non vide et majorée par y. E possède donc une borne supérieure α . Comme $\alpha-x<\alpha,\ \alpha-x$ ne majore pas E. Il existe donc $m\in\mathbb{N}$ tel que

$$mx > \alpha - x$$

De là,

$$(m+1)x > \alpha$$

Or, $(m+1)x \in E$, ce qui contredit le fait que α majore E. \square

Proposition 47. Toute suite croissante et majorée d'éléments de \mathbb{K} converge.

Démonstration. Soit a une suite croissante et majorée d'éléments de $\mathbb{K}.$ Considérons l'ensemble

$$E = \{a_n : n \in \mathbb{N}\}\$$

L'ensemble E est une partie de \mathbb{K} non vide et majorée. E possède donc une borne supérieure ℓ . Soit $\varepsilon \in \mathbb{K}_+^*$. On a $\ell - \varepsilon < \ell$; et donc il existe $N \in \mathbb{N}$ tel que $\ell - \varepsilon < a_N$. Soit $n \geq N$. Par la croissance de a, on a

$$\ell - \varepsilon < a_N \le a_n$$

De plus, ℓ majore E et donc

$$a_n \le \ell < \ell + \varepsilon$$

Ainsi, pour tout $n \geq N$,

$$|a_n - \ell| \le \varepsilon$$

La suite a converge donc vers ℓ . \square

Proposition 48. [Théorème de Bolzano-Weierstrass]

Soit a une suite bornée d'éléments de \mathbb{K} . Il existe une suite extraite de a qui converge.

Démonstration. Pour tout $n \in \mathbb{N}$, l'ensemble

$$E_n = \{a_m : m \ge n\}$$

est une partie de \mathbb{K} non vide et majorée. E_n possède donc une borne supérieure u_n .

Montrons que u est décroissante. Soit $n \in \mathbb{N}$. On a $E_{n+1} \subseteq E_n$, et donc

$$u_{n+1} = \sup E_{n+1} \le \sup E_n = u_n$$

L'ensemble E est minoré par un élément M de \mathbb{K} . On a donc pour tout $n \in \mathbb{N}$, $u_n \geq M$. Ainsi, la suite u est convergente. Notons $\bar{\ell}$ sa limite.

Soit $\varepsilon \in \mathbb{K}_+^*$. Comme u décroît vers ℓ , il existe $N \in \mathbb{N}$ tel que pour tout $n \geq N$, $\ell \leq u_n \leq \ell + \varepsilon$. On a donc pour tout $n \geq N$, pour tout $m \geq n$,

$$a_m \le u_n \le \ell + \varepsilon$$

Par ailleurs comme u_n est la borne supérieure de E, il existe $m \ge n$ tel que $a_m \ge u_n - \varepsilon$. Résumons nous :

$$\forall \varepsilon \in \mathbb{K}_{+}^{*}, \exists N \in \mathbb{N}, \forall n \geq N, \exists m \geq n, |a_{m} - \ell| \leq \varepsilon$$

En d'autres termes, pour tout $\varepsilon \in \mathbb{K}_+^*$, il existe une infinité d'entiers m tels que $|a_m - \ell| \le \varepsilon$.

Construisons maintenant par récurrence sur k une suite strictement croissante d'entiers naturels $(n_k)_{k\in\mathbb{N}}$ telle que la suite $(a_{n_k})_{k\in\mathbb{N}}$ converge vers ℓ .

Par le résultat précédent, il existe un entier n_0 tel que

$$|a_{n_0} - \ell| \le \varepsilon$$

Soit maintenant $k \in \mathbb{N}$. Supposons construit $n_k \in \mathbb{N}$ tel que

$$|a_{n_k} - \ell| \le \frac{1}{2^k}$$

On applique le résultat précédent à $\varepsilon=\frac{1}{2^{k+1}}$ pour construire un entier $n_{k+1}>n_k$ tel que

$$|a_{n_{k+1}} - \ell| \le \frac{1}{2^{k+1}}$$

La suite $(a_{n_k})_{k\in\mathbb{N}}$ est une suite extraite de a, et comme $\frac{1}{2^k}$ tend vers 0 lorsque k tend vers l'infini, cette suite tend vers ℓ . \square

Proposition 49. \mathbb{K} est complet.

Démonstration. Soit a une suite de Cauchy d'éléments de \mathbb{K} . La suite a est bornée. Il existe donc une suite $(a_{n_k})_{k\in\mathbb{N}}$ extraite de a qui converge vers $\ell\in\mathbb{K}$. Montrons que la suite a converge vers ℓ . Pour cela, donnons-nous $\varepsilon\in\mathbb{K}_+^*$. Il existe $K\in\mathbb{N}$ tel que pour tout $k\geq K$, $|a_{n_k}-\ell|\leq \frac{1}{2}\varepsilon$. Par ailleurs, la suite a étant de Cauchy, il existe $N\in\mathbb{N}$ tel que pour tous $m,n\geq N$, $|a_m-a_n|\leq \frac{1}{2}\varepsilon$.

Donnons nous un entier $k \geq K$ tel que $n_k \geq N$. En prenant $m = n_k$ ci-dessus, on a pour tout $n \geq N$,

$$|a_n - \ell| \le |a_n - a_m| + |a_m - \ell| \le \frac{1}{2}\varepsilon + \frac{1}{2}\varepsilon = \varepsilon$$

Ainsi, a tend vers ℓ . \square

$$9.3 \quad (i) \implies (iii)$$

Donnons-nous deux corps ordonnés archimédiens complets $(\mathbb{K}, +, \times, \leq)$ et $(\mathbb{L}, +, \times, \leq)$. Les rationnels vont jouer un rôle important dans la suite. Notons

$$\mathbb{Q}_{\mathbb{K}} = \{ r1_{\mathbb{K}} : r \in \mathbb{Q} \}$$

l'ensemble des « rationnels de \mathbb{K} ». De même, notons $\mathbb{Q}_{\mathbb{L}}$ l'ensemble des multiples rationnels de $1_{\mathbb{L}}$.

Lemme 50. Soit $\varphi : \mathbb{K} \longrightarrow \mathbb{L}$ un morphisme de corps. On a pour tout $r \in \mathbb{Q}$, $\varphi(r1_{\mathbb{K}}) = r1_{\mathbb{L}}$.

Démonstration. φ est un morphisme de groupes additifs. On a donc pour tout $a \in \mathbb{Z}$ et tout $x \in \mathbb{K}$, $\varphi(ax) = a\varphi(x)$. Soit $r \in \mathbb{Q}$. Posons $r = \frac{a}{b}$ où $a \in \mathbb{Z}$ et $b \in \mathbb{N}$. On a

$$br1_{\mathbb{K}} = a1_{\mathbb{K}}$$

De là,

$$b\varphi(r1_{\mathbb{K}}) = \varphi(a1_{\mathbb{K}}) = a\varphi(1_{\mathbb{K}}) = a1_{\mathbb{L}}$$

d'où le résultat en divisant par b. \square

Lemme 51. Soit $\varphi : \mathbb{K} \longrightarrow \mathbb{L}$ un morphisme de corps. La fonction φ est strictement croissante.

Démonstration. Soit $x \in \mathbb{K}_+^*$. Comme \mathbb{K} est complet, x possède une racine carrée t dans \mathbb{K} . On a alors

$$\varphi(x) = \varphi(t^2) = \varphi(t)^2 > 0$$

Soient maintenant $x, y \in \mathbb{K}$. Supposons x < y. On a alors, puisque y - x > 0,

$$\varphi(y) - \varphi(x) = \varphi(y - x) > 0$$

et donc $\varphi(x) < \varphi(y)$. \square

Lemme 52. Soit $\varphi : \mathbb{K} \longrightarrow \mathbb{L}$ un morphisme de corps. Soit a une suite d'éléments de \mathbb{K} qui converge vers $\ell \in \mathbb{K}$. Alors la suite $(\varphi(a_n))_{n \in \mathbb{N}}$ converge vers $\varphi(\ell)$.

Démonstration. Soit $\varepsilon \in \mathbb{L}_+^*$. Soit $r \in \mathbb{Q}_+^*$ tel que $r1_{\mathbb{L}} \leq \varepsilon$. Un tel r existe car \mathbb{L} est archimédien, et donc $\mathbb{Q}_{\mathbb{L}}$ est dense dans \mathbb{L} . Comme a tend vers ℓ , il existe $N \in \mathbb{N}$ tel que pour tout $n \geq N$, $-r1_{\mathbb{K}} \leq a_n - \ell \leq r1_{\mathbb{K}}$. Par la croissance de φ , on a pour tout $n \geq N$,

$$-\varphi(r1_{\mathbb{K}}) \le \varphi(a_n) - \varphi(\ell) \le \varphi(r1_{\mathbb{K}})$$

Comme r est rationnel, $\varphi(r1_{\mathbb{K}}) = r1_{\mathbb{L}}$, et donc, pour tout $n \geq N$,

$$-r1_{\mathbb{L}} \le \varphi(a_n) - \varphi(\ell) \le r1_{\mathbb{L}}$$

Ainsi, pour tout $n \geq N$,

$$|\varphi(a_n) - \varphi(\ell)| \le r1_{\mathbb{L}} \le \varepsilon$$

La suite $(\varphi(a_n))_{n\in\mathbb{N}}$ converge donc vers $\varphi(\ell)$. \square

Proposition 53. Il existe au plus un morphisme de corps de \mathbb{K} vers \mathbb{L} .

En particulier, en prenant $\mathbb{L} = \mathbb{R}$, on a le résultat ci-dessous.

Théorème 54. Soit \mathbb{K} un corps ordonné archimédien complet. Il existe au plus un isomorphisme de corps de \mathbb{K} vers \mathbb{R} .

Démonstration. Soit $\varphi : \mathbb{K} \longrightarrow \mathbb{L}$ un morphisme de corps. Pour tout $x \in \mathbb{K}$, soit $(r_n)_{n \in \mathbb{N}}$ une suite de rationnels telle que $(r_n 1_{\mathbb{K}})_{n \in \mathbb{N}}$ tend vers x. Alors, la suite $(r_n 1_{\mathbb{L}})_{n \in \mathbb{N}}$ tend vers $\varphi(x)$. On a donc

$$\varphi(x) = \lim_{n \to +\infty} r_n 1_{\mathbb{L}}$$

On en déduit l'unicité de φ . \square

Nous allons maintenant prouver l'existence d'un isomorphisme de \mathbb{K} sur \mathbb{L} .

Lemme 55. Soit $(r_n)_{n\in\mathbb{N}}$ une suite de rationnels telle que $(r_n1_{\mathbb{K}})_{n\in\mathbb{N}}$ converge. Alors, la suite $(r_n1_{\mathbb{L}})_{n\in\mathbb{N}}$ est convergente.

Démonstration. Comme \mathbb{L} est complet, il suffit de prouver que cette suite est une suite de Cauchy. On a pour tous $m, n \in \mathbb{N}$,

$$|r_m 1_{\mathbb{K}} - s_m 1_{\mathbb{K}}| = |r_m - s_m| |1_{\mathbb{K}}| = |r_m - s_m|$$

La suite $(r_n 1_{\mathbb{K}})_{n \in \mathbb{N}}$ est convergente, donc de Cauchy. Il en résulte, par l'égalité précédente, que la suite de rationnels r est aussi de Cauchy.

Remarquons que

$$|r_m 1_{\mathbb{L}} - s_m 1_{\mathbb{L}}| = |r_m - s_m|$$

Il en résulte que la suite $(r_n 1_{\mathbb{L}})_{n \in \mathbb{N}}$ est également de Cauchy. Comme \mathbb{L} est complet, cette suite converge. \square

Lemme 56. Soit $(r_n)_{n\in\mathbb{N}}$ et $(s_n)_{n\in\mathbb{N}}$ deux suite de rationnels telles que $(r_n1_{\mathbb{K}})_{n\in\mathbb{N}}$ et $(s_n1_{\mathbb{K}})_{n\in\mathbb{N}}$ convergent vers une même limite. Alors, les suites $(r_n1_{\mathbb{L}})_{n\in\mathbb{N}}$ et $(s_n1_{\mathbb{L}})_{n\in\mathbb{N}}$ convergent aussi vers une même limite.

Démonstration. Soit ℓ la limite commune des suites $(r_n 1_{\mathbb{K}})_{n \in \mathbb{N}}$ et $(s_n 1_{\mathbb{K}})_{n \in \mathbb{N}}$. Soient ℓ' et ℓ'' les limites des suites $(r_n 1_{\mathbb{L}})_{n \in \mathbb{N}}$ et $(s_n 1_{\mathbb{L}})_{n \in \mathbb{N}}$. Ces deux limites existent par le lemme précédent. On a pour tout $n \in \mathbb{N}$,

$$|r_n 1_{\mathbb{L}} - s_n 1_{\mathbb{L}}| = |r_n 1_{\mathbb{K}} - s_n 1_{\mathbb{K}}|$$

En passant à la limite dans l'égalité ci-dessus, on obtient

$$|\ell' - \ell''| = 0$$

d'où $\ell' = \ell''$. \square

Grâce aux deux lemmes précédents, nous pouvons définir une application φ : $\mathbb{K} \longrightarrow \mathbb{L}$ comme suit. Comme \mathbb{K} est archimédien, pour tout $x \in \mathbb{K}$, il existe une suite de rationnels $(r_n)_{n \in \mathbb{N}}$ telle que la suite $(r_n 1_{\mathbb{K}})_{n \in \mathbb{N}}$ tend vers x. La suite $(r_n 1_{\mathbb{L}})_{n \in \mathbb{N}}$ est alors convergente, et sa limite ne dépend pas de la suite $(r_n)_{n \in \mathbb{N}}$ choisie. On appelle $\varphi(x)$ la limite en question.

Proposition 57. φ est un isomorphisme de corps.

Démonstration.

- La suite constante égale à $1_{\mathbb{K}}$ tend vers 1_K , et la suite constante égale à $1_{\mathbb{L}}$ tend vers $1_{\mathbb{L}}$. On a donc $\varphi(1_{\mathbb{K}}) = 1_{\mathbb{L}}$.
- Soient $x, y \in \mathbb{K}$. Soient r et s deux suites de rationnels telles que les suites $(r_n 1_{\mathbb{K}})_{n \in \mathbb{N}}$ et $(s_n 1_{\mathbb{K}})_{n \in \mathbb{N}}$ tendent respectivement vers x et y. La suite $(r_n 1_{\mathbb{K}} + s_n 1_{\mathbb{K}})_{n \in \mathbb{N}}$ tend alors vers x + y. On en déduit que

$$\varphi(x+y) = \lim_{n \to \infty} (r_n 1_{\mathbb{L}} + s_n 1_{\mathbb{L}})$$

$$= \lim_{n \to \infty} r_n 1_{\mathbb{L}} + \lim_{n \to \infty} s_n 1_{\mathbb{L}}$$

$$= \varphi(x) + \varphi(y)$$

- De même, pour tous $x, y \in \mathbb{K}$, $\varphi(xy) = \varphi(x)\varphi(y)$.
- Soit $y \in \mathbb{L}$. Comme \mathbb{L} est archimédien, il existe une suite r de rationnels tels que $(r_n 1_{\mathbb{L}})_{n \in \mathbb{N}}$ tend vers y. Cette suite est convergente, c'est donc une suite de Cauchy. On en déduit facilement que la suite r est aussi de Cauchy, puis que la suite $(r_n 1_{\mathbb{K}})_{n \in \mathbb{N}}$ est une suite de Cauchy d'éléments de \mathbb{K} . Comme \mathbb{K} est complet, la suite $(r_n 1_{\mathbb{K}})_{n \in \mathbb{N}}$ tend vers une limite $x \in \mathbb{K}$. On a alors $\varphi(x) = y$. Ainsi, φ est surjective.

En prenant $\mathbb{L} = \mathbb{R}$, on obtient ainsi le résultat attendu.

Théorème 58. Soit $(\mathbb{K},+,\times,\leq)$ un corps ordonné archimédien complet. Il existe un isomorphisme de \mathbb{K} sur \mathbb{R} .

Notons pour terminer que l'unique isomorphisme de $\mathbb K$ sur $\mathbb R$ possède une propriété remarquable.

Proposition 59. Soit $(\mathbb{K}, +, \times, \leq)$ un corps ordonné archimédien complet. Soit φ l'unique isomorphisme de \mathbb{K} sur \mathbb{R} . φ est une isométrie : pour tous $x, y \in \mathbb{K}$,

$$|\varphi(x) - \varphi(y)| = |x - y|$$

Démonstration. Soient $x, y \in \mathbb{K}$. Soient r et s deux suites de rationnels telles que $(r_n 1_{\mathbb{K}})_{n \in \mathbb{N}}$ et $(s_n 1_{\mathbb{K}})_{n \in \mathbb{N}}$ tendent vers x et y. Comme nous l'avons déjà vu plus haut, on a pour tout $n \in \mathbb{N}$,

$$|r_n 1_{\mathbb{L}} - s_n 1_{\mathbb{L}}| = |r_n 1_{\mathbb{K}} - s_n 1_{\mathbb{K}}|$$

En passant à la limite, on obtient le résultat. \square